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Length spectra for Riemannian metrics have been well studied, while sub-
Riemannian length spectra remain largely unexplored. Here we give the
length spectrum for a canonical sub-Riemannian structure attached to any
compact Lie group by restricting its Killing form to the sum of the root spaces.
Surprisingly, the shortest loops are the same in both the Riemannian and sub-
Riemannian cases. We provide specific calculations for SU(2) and SU(3).

1. Introduction

While much is known about the existence and geometric properties of closed
geodesics on Riemannian manifolds in general [Klingenberg 1978], and Lie groups
in particular, we cannot say the same thing about their connection with the algebraic
structure of Lie groups. Moreover, the sub-Riemannian setting has been mostly
neglected.

In the case of simple, simply connected, compact Lie groups, Helgason [2001,
Proposition 11.9] obtained the length of the shortest Riemannian geodesic loop in
terms of the length of the highest root. We expand upon Helgason’s work using more
algebraic methods, obtaining the sub-Riemannian and Riemannian geodesic loop
length spectra. The sub-Riemannian structure consists of the horizontal distribution
defined by the orthogonal complement of a Cartan subalgebra and the restriction
of the bi-invariant metric defined by the Killing form. To our knowledge, nothing
was previously known about the connection between root systems and lengths of
sub-Riemannian geodesic loops.

In Section 2 we provide the background for the root space decomposition of
semisimple, compact Lie algebras and prove Theorem 2.7, which shows that all
sub-Riemannian geodesics are normal. In Section 3 we work in a simple, simply
connected, compact Lie group. We find connections between the algebraic informa-
tion encoded in the root system of the Lie algebra and properties of Riemannian and
sub-Riemannian geodesic loops. In Theorems 3.3 and 3.6 we describe the entire
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length spectra of the Riemannian and certain sub-Riemannian geodesic loops. In
Theorem 3.9 we find properties that help describe the remaining sub-Riemannian
geodesic loops. In Theorem 3.7, we compute the lengths of the shortest Riemannian
and sub-Riemannian loops, which unexpectedly turn out to be equal. Further, in
Corollary 3.8 we derive a purely algebraic formula for the length of the highest
root. In Sections 4 and 5 we provide relevant examples in SU(2) and SU(3).

Note that the terms length spectrum and geodesic have varying definitions in the
literature. By length spectrum, we mean the set of lengths of all primitive geodesic
loops. A sub-Riemannian geodesic is defined as in [Montgomery 2002] as a locally
length minimizing curve. While in general such curves may not satisfy the geodesic
equations, in our setting we show that the two notions coincide (see Theorem 2.7).

2. General results

In this section, we assume that G is a semisimple, connected, compact matrix Lie
group. This assumption is suited to present and prove some general results about
sub-Riemannian geodesics, and we will use the more restrictive simple and simply
connected assumptions in the following sections, where we prove results about
sub-Riemannian geodesic loops. Our notation and definitions will be geared toward
the presentation of the sub-Riemannian geometry, rather than the algebraic theory
of Lie groups.

The Lie algebra of G can be defined in terms of the matrix exponential:

G = {X ∈Mn : et X
∈ G for all t ∈ R},

where Mn is the linear space of n × n real or complex matrices in which G is
included. Then G is a real Lie algebra endowed with the commutator operator

[X, Y ] = XY − Y X.

A Lie algebra is called simple if it is noncommutative and does not have any
nontrivial ideals, and it is called semisimple if it is the direct sum of simple Lie
algebras. A Lie group is simple or semisimple if its Lie algebra has the corresponding
property.

The adjoint representation of G is the group homomorphism

Ad : G→ Aut(G), Ad(g)(X)= gXg−1,

while its differential at the identity is the adjoint representation of its Lie algebra

ad : G→ End(G), ad X (Y )= [X, Y ].

Note that, among semisimple Lie algebras, Ad is an irreducible representation of G

if and only if G is simple.
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The Killing form,
K (X, Y )= trace(ad X · ad Y ),

is negative definite and nondegenerate on the Lie algebra of a semisimple, compact
Lie group, and hence we can define an inner product on G as

(2-1) 〈X, Y 〉 = −ρ K (X, Y ),

where ρ > 0 is a constant which can be adjusted according to our normalization
preferences. The inner product (2-1) generates a bi-invariant metric on G. The
Killing form is Ad-invariant, so Ad(g) is a unitary linear transformation of G for
all g ∈ G and ad X is skew-symmetric for all X ∈ G.

Let T be a maximal torus in G and T be its Lie algebra. In this case, T is a
maximal commutative subalgebra of G called the Cartan subalgebra. Its dimension
is called the rank of G, and also the rank of G. Consider an orthonormal basis
BT = {T1, . . . , Tr } of T , which will be fixed throughout the paper.

We extend the inner product (2-1) on G bilinearly to the complexified Lie algebra
GC = G ⊕ iG. The mappings ad T : GC → GC, T ∈ T , commute and are skew-
symmetric, so they share eigenspaces and have purely imaginary eigenvalues.

Once we fix the orthonormal basis BT , we can identify T ∗ with T and define
the roots as elements of the Cartan subalgebra, as in [Domokos 2015].

Definition 2.1. We define R ∈ T to be a root if R 6= 0 and the root space GR 6= {0},
where

GR = {Z ∈ GC : ad T (Z)= i 〈R, T 〉 Z for all T ∈ T }.

Additionally, we use the notation G0 = TC = T ⊕ iT .

Let R be the set of all roots, which will be partially ordered by the relation
R1 > R2 if the first nonzero coordinate of R1− R2 relative to the ordered basis BT
is positive. We call a root positive if its first nonzero coordinate is positive and
let R+ denote the set of all positive roots. For the most important properties of GR

we quote [Duistermaat and Kolk 2000; Knapp 1986]:

(i) dimC GR = 1.

(ii) If R ∈R then −R ∈R.

(iii) G−R = {X − iY : X + iY ∈ GR}.

(iv) 〈GR1,GR2〉 = 0 if R1, R2 ∈R∪ {0}, R1 6= ±R2.

(v) [GR1,GR2]


= GR1+R2 if R1+ R2 ∈R
= {0} if R1+ R2 6∈R and R1+ R2 6= 0

⊂ iT if R1+ R2 = 0.

(vi) If Z R ∈ GR and Z−R ∈ G−R then [Z R, Z−R] = i〈Z R, Z−R〉R.
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The above properties of GR and the real root space decomposition

G = T ⊕H,
where
(2-2) H= T ⊥ =

⊕
R∈R+

(GR ⊕G−R)∩G,

allow us to choose an orthonormal basis of H,

(2-3) BH = {X1, . . . , Xk, Y1, . . . , Yk},

with the following properties:

(i) For all 1≤ j ≤ k there exists R j ∈R+ such that {X j , Y j } ⊂ (GR j ⊕G−R j )∩G.

(ii) E± j = X j ± iY j ∈ G±R j .

(iii) 〈E j , E− j 〉 = 2.

(iv) [X j , Y j ] = −R j .

Notice that {(g,Hg) : g ∈G}, where Hg= gH, forms a sub-bundle of the tangent
bundle of G, which we call the horizontal sub-bundle. The property T ⊂ [H,H]
shows that this horizontal sub-bundle is bracket-generating, hence its choice defines
a sub-Riemannian metric on G in the following way (see [Montgomery 2002]).

We call an absolutely continuous curve γ : [a, b]→G horizontal if γ ′(t)∈Hγ (t)

for every t ∈ [a, b] where γ ′(t) exists. The length of a horizontal curve is defined as

(2-4) Length(γ )=
∫ b

a
‖γ ′(t)‖ dt.

The bracket-generating property implies that any two points can be connected
by horizontal curves and therefore we can define a sub-Riemannian (also called
Carnot–Carathéodory) distance as

d(x, y)= inf{Length(γ ) : γ is a horizontal curve connecting x and y}.

We say that a horizontal curve γ is a sub-Riemannian geodesic if locally it is
a length minimizer. We call a sub-Riemannian geodesic γ : [0, 1] → G a sub-
Riemannian geodesic loop if γ (0) = γ (1) = I and γ (t) 6= I for all t ∈ (0, 1).
Here, I denotes the identity matrix.

If we do not restrict the curve γ to be horizontal, then similar definitions lead to
Riemannian geodesics and geodesic loops. With the choice of the bi-invariant inner
product (2-1), the Riemannian geodesics through the identity and in the direction
of an arbitrary X ∈ G have the form

γ (t)= et X
;

see [Arvanitoyeorgos 2003, Chapter 3].
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Remark 2.2. With our assumptions on G and H, all sub-Riemannian geodesics are
smooth [Montgomery 1994, Theorem 3]. Moreover, as the inner product on H is
the restriction of the inner product (2-1) defined on G, a sub-Riemannian geodesic
is also a smooth curve of equal Riemannian length.

Sub-Riemannian geodesics can be characterized in various ways. We follow
the description from [Montgomery 1994; 1995; 2002], but also see [Agrachev and
Sarychev 1999; Boscain et al. 2002]. If a sub-Riemannian geodesic is a projection
to G of a solution to Hamilton’s equations for the sub-Riemannian Hamiltonian,
then we call it normal, otherwise we call it abnormal. If a sub-Riemannian geodesic
is a critical point of the endpoint map, then we call it singular, otherwise we call it
regular [Montgomery 1994]. The following implications hold.

Proposition 2.3 [Montgomery 2002, Theorem 5.8]. All regular sub-Riemannian
geodesics are normal and, therefore, all abnormal geodesics are singular.

If the horizontal distribution is fat, which means that for all X ∈H

H+ [X,H] = G,

then all sub-Riemannian geodesics are normal [Montgomery 1995, Proposition 4].
For example, the horizontal distribution is fat in the case of SU(2), but not in the
case of SU(3).

Regarding the form of the normal geodesics we have the following result, which
is [Montgomery 2002, Theorem 11.8] adapted to our setting. See also [Boscain
et al. 2002].

Proposition 2.4. Consider a semisimple, connected, compact Lie group G endowed
with horizontal distribution defined by the orthogonal complement H of a Cartan
subalgebra T , and inner product (2-1). Then the normal sub-Riemannian geodesics
through the identity are of the form

(2-5) γ (t)= et X
· e−t X⊥,

where X is any element of G and X⊥ is the orthogonal projection of X onto T .

Definition 2.5. If X ∈ H, then we call γX (t) = et X a horizontal Riemannian
geodesic.

These are precisely the Riemannian geodesics which are also sub-Riemannian.
As we will see, they can be regular or singular.

If R ∈R+, then let us use the notation HR = (GR⊕G−R)∩G. With this notation
we can rewrite (2-2) as

(2-6) H= T ⊥ =
⊕

R∈R+
HR.
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From the relations

[HR,HR] = span{R} and [R,HR] =HR,

we conclude that

(2-7) su(2)R =HR ⊕ span{R}

is a subalgebra of G, isomorphic to su(2).
For each T ∈ T let

RT
= {R ∈R+ : 〈R, T 〉 = 0}

and

(2-8) GT
=

⊕
R∈RT

su(2)R.

If RT
6=∅, then GT is a nontrivial Lie subalgebra of G and therefore we can find a

closed, connected subgroup GT of G, which has GT as its Lie algebra. Note that GT

carries a sub-Riemannian geometry, for which the horizontal distribution is

(2-9) HT
=

⊕
R∈RT

HR.

Therefore, horizontal curves in GT are also horizontal in G and if a normal sub-
Riemannian geodesic of G lies in GT, then it is a normal sub-Riemannian geodesic
of GT too.

A characteristic subgroup for a singular sub-Riemannian geodesic γ is a closed
connected subgroup within which γ is regular.

Proposition 2.6 [Montgomery 1994, Theorem 2]. Every singular sub-Riemannian
geodesic of G lies in some characteristic subgroup GT with dimension strictly less
than the dimension of G.

Propositions 2.3 and 2.6 allow us to give a simple algebraic proof of the following
result, which is also proved using control theoretic methods, including generalized
Maslov index theory, in [Boscain et al. 2002].

Theorem 2.7. Consider a semisimple, connected, compact Lie group G endowed
with the horizontal distribution defined by the orthogonal complement H of a Cartan
subalgebra T , and inner product (2-1). Then we have the following results.

(i) All sub-Riemannian geodesics are normal.

(ii) All sub-Riemannian geodesics through the identity have the form

γ (t)= et X
· e−t X⊥,

where X ∈ G and X⊥ is the orthogonal projection of X onto T .
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Proof. Let us assume that γ is an abnormal sub-Riemannian geodesic of G. Then, by
Proposition 2.3, γ is singular and by Proposition 2.6, there exists T ∈ T such that γ
lies in a characteristic subgroup GT. But, as γ is regular in GT, by Proposition 2.3
it is also normal in GT. Hence, γ must have the form (2-5) in GT, which, by
(2-6)–(2-9), gives a normal sub-Riemannian geodesic of G.

Once all sub-Riemannian geodesics are normal, part (ii) is a direct consequence
of Proposition 2.4. �

3. Lengths of sub-Riemannian geodesic loops

In this section we assume that G is a simple, simply connected, compact matrix
Lie group.

For each root R ∈R and n ∈ Z we define the hyperplane in T :

P(R, 2πn)= {T ∈ T : 〈R, T 〉 = 2πn}.

The reflections in T across the hyperplanes P(R, 0)will be denoted by rR . Note that

rR(T )= T −
2〈R, T 〉
‖R‖2

R.

The Weyl group of G can be defined as the group W generated by the reflections
{rR : R ∈R}.

The set
T \

⋃
R∈R

P(R, 0)

is a union of disjoint, open cones, called Weyl chambers. The Weyl group acts
transitively on the Weyl chambers. We define the positive Weyl chamber by

C = {T ∈ T : 〈R, T 〉> 0, for all R ∈R+},

and let C denote its closure.
Let us choose the simple roots Rs = {R1, . . . , Rm}. In the case of a simple Lie

algebra, the root system is irreducible and the length of the roots can take at most 2
values, which implies that the entries of the Cartan matrix,

N (R j , Rk)=
2〈R j , Rk〉

‖Rk‖
2 ,

can take only the following values:

N (R j , Rk)=

{
2 if j = k,
0,−1,−2,−3 if j 6= k,

where at most one of −2 or −3 can appear in the matrix. For each R ∈ R we
denote by

(3-1) PR =
2πR
‖R‖2
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the orthogonal projection of the origin onto the hyperplane P(R, 2π). It is known
from [Helgason 2001, Chapter 7, Lemma 7.6] that

(3-2) e2PR = I, for all R ∈R.

The unit lattice in T is defined by

LT = {T ∈ T : eT
= I },

and let us also set

ZT = {n12PR1 + · · ·+ nm2PRm : n1, . . . , nm ∈ Z}.

By the commutativity of T , it is evident that ZT ⊂ LT . By [Simon 1996, Theorem
IX.1.6] we know that LT /ZT ∼= π1(G), where π1(G) is the fundamental group of
G. Since G is simply connected, it follows that

(3-3) LT = ZT .

From [Simon 1996, Theorem IX.1.4], it is also known that

(3-4) LT ⊆ {T ∈ T : 〈R, T 〉 ∈ 2πZ for all R ∈R},

and the two sets in (3-4) are equal only if the center of G equals {I }.

Definition 3.1. We call the numbers n1, . . . , nm ∈ N ∪ {0} relatively prime if at
least one of the numbers is nonzero and the greatest common factor of the nonzero
numbers is 1. In particular, if we have only one nonzero number, then it must be 1.

Remark 3.2. By (3-3), if the numbers n1, . . . , nm ∈ N∪ {0} are relatively prime,
then the line segment joining the origin to n12PR1 + · · ·+ nm2PRm intersects LT
only at the endpoints.

Theorem 3.3. Let G be a simple, simply connected, compact Lie group endowed
with the bi-invariant inner product (2-1).

(a) If the numbers n1, . . . , nm ∈ N∪ {0} are relatively prime and

T = n12PR1 + · · ·+ nm2PRm ,

then γT (t)= etT, 0≤ t ≤ 1, is a Riemannian geodesic loop with length

‖n12PR1 + · · ·+ nm2PRm‖.

(b) All Riemannian geodesic loops in G have lengths

‖n12PR1 + · · ·+ nm2PRm‖,

where n1, . . . , nm ∈ N∪ {0} are relatively prime.
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Proof. (a) If the rank of G is 1, then T = U(1) and any geodesic loop in T

has length 2π . Now suppose the rank of G is greater than or equal to 2. Let
T = n12PR1 + · · ·+ nm2PRm , where n1, . . . , nm ∈N∪ {0} are relatively prime and
γT (t)= etT. By the commutativity of the elements of T we know that γT (1)= I.
If, for some 0< t < 1, we have γT (t)= I, then t (n12PR1 + · · · + nm2PRm ) ∈ LT
and, by Remark 3.2, this contradicts the fact that n1, . . . , nm are relatively prime.
Hence, the length of one loop described by γT is

(3-5) Length(γT )=

∫ 1

0
‖T ‖ dt = ‖n12PR1 + · · ·+ nm2PRm‖.

(b) Let X ∈ G and γX (t)= et X. Assume that γX (1)= I and γX (t) 6= I if 0< t < 1.
Since Ad(G)(X)∩ T is nonempty and finite, and the Weyl group acts transitively
on the Weyl chambers, and each element of the Weyl group can be written as Ad(g)
for some g ∈ G, it follows that there exists g ∈ G such that TX = Ad(g)X ∈ C .
Hence, eTX = geX g−1

= I and therefore TX ∈ LT . By (3-3) we have that TX =

n12PR1 + · · · + nm2PRm , where n1, . . . , nm ∈ N∪ {0} are relatively prime. Using
the fact that ‖TX‖ = ‖X‖ we find that

Length(γX )=

∫ 1

0
‖TX‖ dt = ‖n12PR1 + · · ·+ nm2PRm‖. �

Remark 3.4. Moreover, for any 0 6= T = n12PR1 + · · · + nm2PRm we have that
Ad(G)(T )∩ (G \T ) 6=∅, so there exists X 6∈ T in the same conjugacy class with T.
Hence we have a Riemannian geodesic loop outside of T, corresponding to X ,
which has length equal to ‖T ‖ in (3-5).

We need the following lemma to generalize Theorem 3.3 to the case of horizontal
Riemannian geodesic loops (see Definition 2.5).

Lemma 3.5. For any T ∈ T we have Ad(G)(T )∩H 6=∅.

Proof. By [D’Andrea and Maffei 2016, Lemma 2.2], given T , we can construct an-
other Cartan subalgebra T ′ which is orthogonal to T . Hence, T ′⊂H and, as any two
Cartan subalgebras are conjugate, there exists some g ∈ G such that Ad(g)T = T ′.
Hence, we conclude that for any T ∈ LT we have that Ad(G)(T )∩H 6=∅. �

Theorem 3.6. Consider a simple, simply connected, compact Lie group G endowed
with horizontal distribution defined by the orthogonal complement H of a Cartan
subalgebra T , and inner product (2-1). Then the horizontal Riemannian geodesic
loops have lengths

‖n12PR1 + · · ·+ nm2PRm‖,

where n1, . . . , nm ∈ N∪ {0} are relatively prime.
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Proof. Let X ∈H and γX (t)= et X. If γX (1)= I and γX (t) 6= I for all 0< t < 1,
then we can follow the proof of Theorem 3.3(b), to conclude that there exist
n1, . . . , nm ∈ N∪ {0} relatively prime such that

Length(γX )= ‖n1 PR1 + · · ·+ nm PRm‖.

By Lemma 3.5, the entire length spectrum of ‖n1 PR1 + · · · + nm PRm‖, where
n1, . . . , nm ∈N∪{0} are relatively prime, is covered, and this finishes the proof. �

One might expect the shortest sub-Riemannian geodesic loops to be longer than
their Riemannian counterparts. Surprisingly, the following result, which generalizes
the Riemannian case of [Helgason 2001, Chapter 7, Proposition 11.9], proves
otherwise.

Theorem 3.7. The shortest sub-Riemannian geodesic loops are also the shortest
Riemannian geodesic loops. Their common length is 4π/‖R∗‖, where R∗ is the
highest root.

Proof. We first consider the Riemannian case. Without loss of generality we can
assume that the rank of G is greater than 1. Let γ ∗(t)= et 2PR∗ . By (3-2) we know
that γ ∗(1)= I. Moreover, there exists R ∈R+ such that

N (R, R∗)= 2
〈R, R∗〉
‖R∗‖2

= 1.

Therefore, for any 0< t < 1 we have

〈R, t 2PR∗〉 = 2π t,

which, by (3-4), implies that γ ∗(t) 6= I if 0< t < 1. Hence, the length of one loop
described by γ ∗ is

Length(γ ∗)=
∫ 1

0
‖2PR∗‖ dt =

4π
‖R∗‖

.

Let T = n12PR1 + · · ·+ nm2PRm , where n1, . . . , nm ∈ N∪ {0} are relatively prime
and let γT (t)= etT. Assume that γT (t) 6= I if 0< t < 1 and

Length(γT )≤ Length(γ ∗).

Hence,

‖T ‖ ≤
4π
‖R∗‖

= ‖2PR∗‖.

As in the proof of Theorem 3.3, by the fact that the Weyl group acts transitively on
the Weyl chambers, there exist g ∈G and T1 ∈C such that T1=Ad(g)T. Therefore,
eT1 = I and hence 〈R∗, T1〉 = 2πn for some n ∈N. By [Helgason 2001, Chapter 7,
Theorem 6.1],

P(R∗, 2π)∩C ∩LT =∅,
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which implies that n 6= 1. On the other hand, ‖T1‖ = ‖T ‖ ≤ ‖2PR∗‖, which is the
shortest distance from the origin to P(R∗, 4π). Therefore, n=2 and this implies that
T1 = 2PR∗ . In conclusion, we have Length(γT )= 4π/‖R∗‖, which establishes the
length of the shortest Riemannian geodesic loops. Note that this slight generalization
of [Helgason 2001, Chapter 7, Proposition 11.9] is proved differently here.

We now consider the sub-Riemannian case. Theorem 3.6 implies that the shortest
horizontal Riemannian geodesic loops have length equal to 4π/‖R∗‖, which equals
the length of the shortest Riemannian geodesic loops by the argument above. By
Remark 2.2, every sub-Riemannian geodesic is a smooth Riemannian curve of equal
length, so we conclude that 4π/‖R∗‖ is the shortest length for any sub-Riemannian
geodesic loop. �

Theorem 3.7 implies the following result concerning the highest root.

Corollary 3.8. We have

‖R∗‖ =max
4π

‖n12PR1 + · · ·+ nm PRm‖
,

where n1, . . . , nm ∈ N∪ {0} are relatively prime.

Regarding the sub-Riemannian geodesic loops which are not necessarily hori-
zontal Riemannian, we have the following result.

Theorem 3.9. Let X = H + X⊥ be such that H ∈ H and X⊥ ∈ T . Consider
γ (t)= et X

· e−t X⊥ and assume that γ (t) 6= I if 0< t < 1 and γ (1)= I. Then:

(a) The length of γ satisfies

Length(γ )= ‖H‖ ≥
4π
‖R∗‖

,

and there is an X = H + X⊥ for which 4π/‖R∗‖ is attained.

(b) We have

(3-6) H = eX⊥ H e−X⊥ .

(c) If
Ad(G)(X⊥)∩ T = {S1, . . . , Sl},

then for all 1≤ j ≤ l there exist L j ∈ LT such that

Ad(G)(X)∩ T = {S1+ L1, . . . , Sl + L l}.

Proof. (a) Note that γ (1)= I implies that eX
= eX⊥. Then,

(3-7) γ ′(t)= et X
· X · e−t X⊥

− et X
· X⊥ · e−t X⊥

= et X (X − X⊥)e−t X⊥,

and

‖γ ′(t)‖γ (t) = ‖γ (t)−1
· γ ′(t)‖I = ‖et X⊥

· (X − X⊥) · e−t X⊥
‖ = ‖X − X⊥‖.
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Hence, the length of γ is ‖X− X⊥‖= ‖H‖. The fact that ‖H‖ is at least 4π/‖R∗‖
is an immediate consequence of Theorem 3.6.

Consider the simply connected Lie subgroup SU(2)R∗ of G which has its Lie
algebra equal to su(2)R∗ , and denote by X∗ and Y ∗ those elements of (2-3) which,
together with R∗, generate su(2)R∗ . The relations

[R∗, X∗] = −‖R∗‖2Y ∗ and [R∗, Y ∗] = ‖R∗‖2 X∗

show that the only positive root, and hence the highest root in su(2)R∗ , is R∗. In a
similar way to the proof of (4-2), we can obtain a sub-Riemannian geodesic loop in
SU(2)R∗ whose length is 4π/‖R∗‖.

(b) We claim that γ ′(0)= γ ′(1). This information can be found in [Helgason 2001,
page 148, Exercise 3] and its proof is based on the fact that for all t ∈ R,

γ (t + 1)= e(t+1)X e−(t+1)X⊥
= et X eX e−t X⊥ e−X⊥

= et X eX e−X⊥ e−t X⊥
= et X e−t X⊥

= γ (t).

By (3-7), it follows that

X − X⊥ = eX (X − X⊥) e−X⊥,

which clearly implies (3-6).

(c) By the properties of the adjoint representation there exist S1, . . . , Sl ∈ T and
S′1, . . . , S′l ∈ T , where l is the number of Weyl chambers, such that

(3-8) Ad(G)(X⊥)∩ T = {S1, . . . , Sl}

and

(3-9) Ad(G)(X)∩ T = {S′1, . . . , S′l }.

Note that in (3-8) and (3-9) some of the S j and S′j might be repeated if they belong
to one of the hyperplanes P(R, 0) for R ∈R.

Therefore,

(3-10) Ad(G)(eX⊥)∩T = {eS1, . . . , eSl },

and

(3-11) Ad(G)(eX )∩T = {eS′1, . . . , eS′l }.

The fact that eX⊥
= eX implies that the sets in (3-10) and (3-11) must coincide.

Therefore, by rearranging the elements if necessary, we can suppose that for all
1≤ j ≤ l, we have eS j = eS′j, which immediately implies the existence of L j ∈ LT
such that S′j = S j + L j . �

Since X⊥ ∈ T , we can see that one of S1, . . . , Sl in (3-8) must be X⊥. Therefore,
we have the following corollary.
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Corollary 3.10. Under the assumptions of Theorem 3.9, there exist g ∈ G and
L ∈ LT such that X = Ad(g)(X⊥+ L).

4. The case of SU(2)

The special unitary group of 2× 2 complex matrices is

SU(2)=
{

g =
(
α β

−β α

)
: α, β ∈ C, |α|2+ |β|2 = 1

}
.

Its Lie algebra is the three dimensional real Lie algebra

su(2)=
{

X =
(

i x1 x2+ i x3

−x2+ i x3 −i x1

)
: x1, x2, x3 ∈ R

}
.

The Killing form of su(2) is

K (X, Y )= 4 trace(XY ),

while the inner product (2-1) is defined as

〈X, Y 〉 = − 1
2 trace(XY ).

The Cartan subalgebra T is spanned by the unit vector

T1 =

(
−i 0
0 i

)
and the orthonormal basis of H is formed by

X1 =

(
0 1
−1 0

)
and Y1 =

(
0 i
i 0

)
.

The exponential map exp : su(2)→ SU(2) has the following simple form:

exp(X)= eX
= cos(‖X‖) I +

sin(‖X‖)
‖X‖

X.

Consider X = aX1+ bY1+ cT1. Then, for 0≤ t ≤ 1,

et X
= cos(t

√
a2+ b2+ c2) I +

sin(t
√

a2+ b2+ c2)
√

a2+ b2+ c2
X,

and
et X⊥
= cos(tc) I + sin(tc) T1.

If we have
√

a2+ b2+ c2 = 2π , the Riemannian geodesic et X closes the first time
at t = 1, which shows that the Riemannian length spectrum equals {2π}. For the
sub-Riemannian geodesic γ (t)= et X e−t X⊥, the condition eX

= eX⊥ implies that

(4-1)
√

a2+ b2+ c2 = nπ and |c| = mπ,
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where m, n ∈ N∪ {0}, m ≤ n, are both even or both odd. To ensure γ (t) 6= I for
all 0< t < 1, we require that m, n ∈ N∪ {0} are both odd and relatively prime or
both even and m

2 ,
n
2 are relatively prime with one of them odd and the other even.

Notice that, as the only positive root of SU(2) is R1 = 2T1, we have ‖R∗‖ =
‖2T1‖ = 2, and therefore

(4-2) ‖H‖ = ‖X − X⊥‖ = π
√

n2−m2 =
2π
√

n2−m2

‖R∗‖
.

The same result can be obtained by Theorem 3.9. In SU(2) the unit lattice is
LT = {2kπT1 : k ∈ Z}. The formula (3-6) implies that

c = mπ ∈ πZ.

The matrices S′1 and S′2 from (3-9) are diagonal with entries consisting of the
eigenvalues of X . Thus, Theorem 3.9 implies that there exists some k ∈N such that√

a2+ b2+m2π2−mπ = 2kπ,

and this implies (4-1).
We have therefore presented two algebraic proofs of the following proposition,

which is a special case of Theorems 3.3, 3.6, and 3.7, and which extends the results
from [Chang et al. 2011; Klapheck and VanValkenburgh 2019].

Proposition 4.1. In SU(2) the following properties hold.

(a) The Riemannian geodesic loops have length equal to 2π .

(b) The horizontal Riemannian geodesic loops have length equal to 2π .

(c) The shortest sub-Riemannian geodesic loops have length equal to 2π .

(d) The sub-Riemannian geodesic loops have lengths equal to π
√

n2−m2, where
m, n ∈ N∪ {0} are odd and relatively prime or even and m

2 ,
n
2 are relatively

prime with one of them odd and the other even.

Remark 4.2. As an introduction to the next section, let us show that we can use
Viète’s formulas to get the result of Proposition 4.1(d). Indeed, the characteristic
polynomial of X is

P(λ)= λ2
+ (a2

+ b2
+ c2),

and by Theorem 3.9 and the first Viète formula, the eigenvalues of X must be of
the form λ1 = −ci − 2kπ i and λ2 = ci + 2kπ i , where k ∈ N. The second Viète
formula gives

λ1λ2 = (c+ 2kπ)2 = a2
+ b2
+ c2,

which leads to (4-1).
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Remark 4.3. For comparison with the case of SU(3) in the next section, note that
in SU(2) the sub-Riemannian geodesic loops have the form

(4-3) γ (t)= et(a1 X1+b1Y1+
m
2 R1) e−t m

2 R1,

where a, b, c,m satisfy (4-1).

5. The case of SU(3)

Consider the special unitary group of 3× 3 complex matrices

SU(3)= {g ∈ GL(3,C) : g · g∗ = I, det g = 1},

and its Lie algebra

su(3)= {X ∈ gl(3,C) : X + X∗ = 0, trace X = 0}.

The inner product is defined by

〈X, Y 〉 = − 1
2 trace(XY ).

We consider the maximal torus

T =


eia1 0 0

0 eia2 0
0 0 eia3

 : a1, a2, a3 ∈ R, a1+ a2+ a3 = 0


and its Lie algebra

T =


ia1 0 0

0 ia2 0
0 0 ia3

 : a1, a2, a3 ∈ R , a1+ a2+ a3 = 0

,
which is our choice for the Cartan subalgebra. The following are the Gell-Mann
matrices, which form an orthonormal basis of su(3) and satisfy the relations in
(2-2), (2-3), and (i)–(iv) on page 324:

T1=

−i 0 0
0 i 0
0 0 0

, T2=


−i
√

3
0 0

0 −i
√

3
0

0 0 2i
√

3

, X1=

 0 1 0
−1 0 0
0 0 0

, Y1=

0 i 0
i 0 0
0 0 0

,

X2 =

0 0 0
0 0 1
0 −1 0

, Y2 =

0 0 0
0 0 −i
0 −i 0

, X3 =

 0 0 1
0 0 0
−1 0 0

, Y3 =

0 0 i
0 0 0
i 0 0

.
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The positive roots are

R1 =

−2i 0 0
0 2i 0
0 0 0

= 2T1,

R2 =

 0 0 0
0 2i 0
0 0 −2i

= T1−
√

3T2,

R3 =

−2i 0 0
0 0 0
0 0 2i

= T1+
√

3T2.

The highest root is R∗ = R1, while the two simple roots are R2 and R3. The unit
lattice is

LT = {nπR2+mπR3 : n, m ∈ Z},

and observe that

(5-1) eπR1 = eπR2 = eπR3 = I.

For k = 1, 2, 3, the projections of the origin onto the hyperplanes P(Rk, 2π) are

PRk =
π

2
Rk,

and, indeed, (5-1) is equivalent to

e2PRk = I, k = 1, 2, 3.

Observing that

‖nπR2+mπR3‖ = 2π
√

n2− nm+m2,

we conclude that, in SU(3), Theorems 3.3, 3.6, and 3.7 have the following special
form.

Proposition 5.1. In SU(3) the following properties hold.

(a) The Riemannian geodesic loops have lengths equal to

2π
√

n2− nm+m2,

where n,m ∈ N∪ {0} are relatively prime.

(b) The horizontal Riemannian geodesic loops have lengths equal to

2π
√

n2− nm+m2,

where n,m ∈ N∪ {0} are relatively prime.

(c) The shortest sub-Riemannian geodesic loops have length equal to 2π .
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To obtain information about the full sub-Riemannian length spectrum in SU(3),
consider

H = a1 X1+ b1Y1+ a2 X2+ b2Y2+ a3 X3+ b3Y3,

X⊥ =
c1

2
R3+

c2

2
R2 =

−c1i 0 0
0 c2i 0
0 0 (c1− c2)i

,
X = H + X⊥, and γ (t)= et X e−t X⊥ .

The characteristic polynomial of X is

P(λ)=−λ3
− pλ+ qi,

where

p =
3∑

j=1

(a2
j + b2

j )+ c2
1+ c2

2− c1c2,

and

q = c2(a2
3 + b2

3− a2
1 − b2

1+ c2
1)− c1(a2

2 + b2
2− a2

1 − b2
1+ c2

2)

+2(a1a2b3+ a1b2a3− b1a2a3+ b1b2b3).

Note that p = ‖H‖2+‖X⊥‖2. Formula (3-6) gives

(5-2)

c1+ c2 ∈ 2πZ if a1+ b1i 6= 0,

c1− 2c2 ∈ 2πZ if a2+ b2i 6= 0,

2c1− c2 ∈ 2πZ if a3+ b3i 6= 0.

To see the connection with the case of SU(2), let us start with the following
simple cases.

Case 1: Consider c2 = −c1, a2 = b2 = a3 = b3 = 0. This corresponds to
the case of SU(2) from the previous section and these geodesics are singular
in SU(3). Therefore the sub-Riemannian geodesics have the form (4-3) and the
lengths π

√
n2−m2 from Proposition 4.1(d).

Case 2: Consider c2 = 0, a2 = b2 = a3 = b3 = 0. These geodesics are not
contained in any copy of SU(2) and are regular in SU(3). Here, c1 = 2mπ , m ∈ Z,
and the eigenvalues of X are

−2mπ i and
(

mπ ±
√

a2
1 + b2

1+m2π2
)

i.

By Theorem 3.9(c) we have that

(5-3) |c1| = 2mπ and a2
1 + b2

1+m2π2
= n2π2,
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where m, n ∈N∪{0}, m ≤ n, are both odd or even. Therefore, the sub-Riemannian
geodesic loop corresponding to (5-3) is

γ (t)= et (a1 X1+b1Y1+m R3) e−tm R3,

and its length is π
√

n2−m2.

Case 3: If at least two of aj + bj i , j = 1, 2, 3, are not zero, then

c1 =
4n+ 2m

3
π, c2 =

2n− 2m
3

π,

where n,m ∈ Z. Theorem 3.9(c) and the first Viète formula for the characteristic
polynomial imply that the eigenvalues of X must have the form

(5-4)

λ1 = (−c1− 2kπ)i,

λ2 = (c2+ 2lπ)i,

λ3 = (c1− c2+ 2(k− l)π)i.

The second Viète formula gives

(5-5) ‖H‖ =
√

c1(4k− 2l)π + c2(4l − 2k)π + 4(k2+ l2− kl)π2.

From the third Viète formula we find

4c1c2(k− l)π +4c1l(2k− l)π2
+4c2k(k−2l)π2

+2c2
1lπ −2c2

2kπ +8kl(k− l)π3

= (a2
3 + b2

3− a2
1 − b2

1)c2− (a2
2 + b2

2− a2
1 − b2

1)c1

+2(a1a2b3+ a1b2a3− b1a2a3+ b1b2b3).

The complexity of this formula hides its true geometric meaning; however, in the
case when q = 0, it reduces to 0= 0, and we have the following eigenvalues for X :

0 and ±

√
‖H‖2+‖X⊥‖2 i.

Without loss of generality we can assume that λ1 = 0. Then c1 = 2kπ , which
implies that m = 3k− 2n and c2 = 2(n− k). From (5-5) it follows that

‖H‖ = 2π
√
(2k− l)2− nk+ 2nl,

which in the case of k = l reduces to

‖H‖ = 2π
√

k2+ nk = 2π
√(

k+ n
2

)2
−

n2

4 .

This shows that, as expected, formula (5-5) includes the sub-Riemannian geodesic
loop length spectrum of SU(2).
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Note that q = 0 is satisfied if c2 = 0, a2
1 + b2

1 = a2
2 + b2

2 and a3 = b3 = 0. As a
numerical example we can give the sub-Riemannian geodesic loop of length 8π
described by

γ (t)= eπ(5X1+
√

7Y1+5X2+
√

7Y2+3R3)t e−3πR3t .

In conclusion, we have the following result.

Proposition 5.2. In SU(3) the sub-Riemannian geodesic loops have lengths equal to

2π
√(

(2n+m)(2k−l)
3

+
(n−m)(2l−k)

3

)
+ (k2+ l2− kl),

where m, n, k, l ∈ Z.
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